Part Number Hot Search : 
LF50CD LCX320 95R3L XMP6A1 KBP06 U2506 MTZJ2 5TRPB
Product Description
Full Text Search
 

To Download KM29N040IT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www..com
KM29N040T, KM29N040IT
Document Title
512K x 8 Bit NAND Flash Memory
FLASH MEMORY
Revision History
Revision No. History
0.0 1.0 1.1 Data Sheet 1997. Data Sheet 1998. Data Sheet 1998.
Draft Date
April 10th 1997 April 10th 1998 July 14th 1998
Remark
Final
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to cha nge the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questio ns, please contact the SAMSUNG branch office near you.
1
www..com
KM29N040T, KM29N040IT
512K x 8 Bit NAND Flash Memory
FEATURES
* Single 5.0 - volt Power Supply * Organization - Memory Cell Array : 512K x 8 - Data Register : 32 x 8 bit * Automatic Program and Erase - Frame Program : 32Byte in 500 s - Block Erase : 4K Byte in 6ms * 32-Byte Frame Read Operation - Random Access : 15 s(Max.) - Serial Frame Access : 120ns(Min.) * Command/Address/Data Multiplexed I/O port * Low Operation Current (Typical) - 10A Standby Current - 10mA Read/ Program/Erase Current * Reliable CMOS Floating-Gate Technology - Endurance : 100K Program/Erase Cycles * 44(40) - Lead TSOP Type II (400mil / 0.8 mm pitch)
FLASH MEMORY
GENERAL DESCRIPTION
The KM29N040 is a 512Kx8bit NAND Flash Memory. Its NAND cell structure provides the most cost-effective solution for Digital Audio Recording. A Program operation programs a 32-byte frame in typically 500 s and an Erase operation erase a 4Kbyte block in typically 6ms. Data in a frame can be read out at a burst cycle rate of 120ns/byte. The I/O pins serve as the ports for address and data input/output as well as for command inputs. The on-chip write controller automates the Program and Erase operations, including Program or Erase pulse repetition, where required, and performs internal verification of cell data. The KM29N040 is an optimum solution for flash memory application that do not require the high performance levels or capacity of larger density flash memories. These application include data storage in digital Telephone Answering Devices(TAD) and other consumer applications that require voice data storage.
PIN CONFIGURATION
PIN DESCRIPTION
Pin Name I/O0 ~ I/O7 CLE Pin Function Data Inputs/Outputs Command Latch Enable Address Latch Enable Chip Enable Read Enable Write Enable Write Protect Ground Input Ready/Busy output Power Ground No Connection
VSS CLE ALE WE WP N.C N.C N.C N.C N.C
N.C N.C N.C N.C N.C I/O0 I/O1 I/O2 I/O3 VSS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23
VCC CE RE R/B GND N.C N.C N.C N.C N.C
ALE CE RE WE WP GND R/B VCC VSS N.C
N.C N.C N.C N.C N.C I/O7 I/O6 I/O5 I/O4 VCC
44(40) TSOP (II)
NOTE : Connect all VCC and VSS pins of each device to common power supply outputs. Do not leave VCC, VSS or GND inputs disconnected.
2
www..com
KM29N040T, KM29N040IT
Figure 1. FUNCTIONAL BLOCK DIAGRAM
FLASH MEMORY
A7 - A18
X-Buffers Latches & Decoders Y-Buffers Latches & Decoders
4M Bit NAND Flash ARRAY 32Byte x 4frame x 4096row
A0 - A6
Page Register & S/A Command Command Register Y-Gating I/O Buffers & Latches
CE RE WE
Control Logic & High Voltage Generator
I/O0 Global Buffers I/O7
CLE ALE WP
Figure 2. ARRAY ORGANIZATION
Good Block
1Block(32Row) (4K Byte)
The 1st Blockt(4KB) The 1st Block (4KB)
4M : 4K Row (=128 Blocks) 1 Frame = 32 Byte 1 Row = 4 Frames = 128 Bytes 1 Block = 32 rows = 4K Bytes 1 Device = 32B x 4frames x 32rows x 128blocks = 4Mbits 8bit 128Byte Column
1
2
3
4
Frame Register 32 Byte
I/O0 ~ I/O7
I/O0 1st Cycle 2nd Cycle 3rd Cycle A0 A8 A16
I/O1 A1 A9 A17
I/O2 A2 A10 A18
I/O3 A3 A11 X*
I/O4 A4 A12
(1)
I/O5 A5 A13 X*
I/O6 A6 A14 *X
I/O7 A7 A15 *X
Column Address (A0-A4) Frame Address (A5-A6) Row Address (A7-A11) Block Address (A12-A18)
X*
NOTE : *(1) : X can be VIL or VIH
3
www..com
KM29N040T, KM29N040IT
PRODUCT INTRODUCTION
FLASH MEMORY
The KM29N040 is a 4M bit memory organized as 4096 rows by 1024 columns. A 256-bit data register is connected to memory cell arrays accommodating data transfer between the registers and the cell array during frame read and frame program operations. The memory array is composed of unit NAND structures in which 8 cells are connected serially. Each of the 8 cells reside in a different row. A block consists of the 32 rows, totaling 4096 NAND structures of 8bits each. The array organization is shown in Figure 2. The program and read operations are executed on a frame basis, while the erase operation is e xecuted on a block basis. The memory array consists of 128 separately erasable 4K-byte blocks. The KM29N040 has addresses multiplexed into 8 I/O pins. This scheme not only reduces pin count but allows systems upgrades to higher density flash memories by maintaining consistency in system board design. Command, address and data are all written through I/Os by bringing WE to low while CE is low. Data is latched on the rising edge of WE. Command Latch Enable(CLE) and Address Latch Enable(ALE) are used to multiplex command and address respectively, via the I/O pins. All commands require one bus cycle except for Block Erase command which requires two cycles. For byte-level addressing, the 512K byte physical space requires a 19-bit address, low row address and high row address. Frame Read and frame Program require the same three address cycles following by a command input. In the Block Erase operation, however, only the two row address cycles are required. Device operations are selected by writing specific commands into the command register. Table 1 defines the specific commands of the KM29N040.
Table 1. COMMAND SETS
Function Read Reset Frame Program Block Erase Status read Read ID 1st. Cycle 00h FFh 80h 60h 70h 90h 2nd. Cycle 10h D0h O O Acceptable Command during Busy
4
www..com
KM29N040T, KM29N040IT
PIN DESCRIPTION
Command Latch Enable(CLE)
FLASH MEMORY
The CLE input controls the path activation for commands sent to the command register. When active high, commands are latched into the command register through the I/O ports on the rising edge of the WE signal.
Address Latch Enable(ALE)
The ALE input controls the path activation for address and input data to the internal address/data register. Addresses are latch ed on the rising edge of WE with ALE high, and input data is latched when ALE is low.
Chip Enable(CE)
The CE input is the device selection control. When CE goes high during a read operation the device is returned to standby mode. However, when the device is in the busy state during program or erase, CE high is ignored, and does not return the device to standby mode.
Write Enable( WE)
The WE input controls writes to the I/O port. Commands, address and data are latched on the rising edge of the WE pulse.
Read Enable( RE)
The RE input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid t of RE which also increments the internal column address counter by one.
REA
after the falling edge
I/O Port : I/O 0 ~ I/O7
The I/O pins are used to input command, address and data, and to output data during read operations. The I/O pins float to high- z when the chip is deselected or when the outputs are disabled.
Write Protect( WP)
The WP pin provides inadvertent write/erase protection during power transitions. The internal high voltage generator is reset when the WP pin is active low.
Ready/Busy(R/B)
The R/B output indicates the status of the device operation. When low, it indicates that a program, erase or random read operation is in process and returns to high state upon completion. It is an open drain output and does not float to high-z condition when the chip is deselected or when outputs are disabled.
5
www..com
KM29N040T, KM29N040IT
ABSOLUTE MAXIMUM RATINGS
Parameter Voltage on any pin relative to V SS Temperature Under Bias Storage Temperature Short Circuit Output Current KM29N040T KM29N040IT TSTG IOS Symbol VIN TBIAS
FLASH MEMORY
Rating -0.6 to +7.0 -10 to +125 -40 to +125 -65 to +150 5 Unit V C C mA
NOTE: 1. Minimum DC voltage is -0.3V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is VCC+0.3V which, during transitions, may overshoot to VCC+2.0V for periods <20ns. 2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED OPERATING CONDITIONS
(Voltage reference to GND, KM29N040T:TA=0 to 70C, KM29N040IT:TA=-40 to 85C)
Parameter Supply Voltage Supply Voltage Symbol VCC VSS Min 4.5 0 Typ. 5.0 0 Max 5.5 0 Unit V V
DC AND OPERATING CHARACTERISTICS (Recommended operating conditions otherwise noted.)
Parameter Burst Read Cycle Operating Current Command, Address Input Data Input Program Erase Stand-by Current(TTL) Stand-by Current(CMOS) Input Leakage Current Output Leakage Current Input High Voltage, All inputs Input Low Voltage, All inputs Output High Voltage Level Output Low Voltage Level Output Low Current(R/ B) Symbol ICC1 ICC3 ICC4 ICC5 ICC6 ISB1 ISB2 ILI ILO VIH VIL VOH VOL IOL(R/B) IOH=-400A IOL=2.1mA VOL=0.4V Test Conditions tcycle=120ns tcycle=120ns tcycle=120ns CE=VIH, WP=0V/VCC CE=VCC-0.2, WP=0V/VCC VIN=0 to 5.5V VOUT=0 to 5.5V CE=VIL, IOUT=0mA Min 2.4 -0.3 2.4 8 Typ 10 10 10 10 10 10 10 Max 20 20 20 20 20 1 50 10 10 VCC+0.5 0.8 0.4 mA V A mA Unit
6
www..com
KM29N040T, KM29N040IT
VALID BLOCK
Parameter Valid Block Number Symbol NVB Min 125 Typ. -
FLASH MEMORY
Max 128 Unit Block
NOTE : 1. The KM29N040 may or may not include bad blocks. Bad blocks are defined as blocks that contain one or more bad bits. Do not tr y to access these bad blocks for program and erase. The Minimum valid blocks are guaranteed for 10 years data retention or 1M program erase cycli ng. (Refer to the attached technical notes ) 2. The 1st block, which is placed on 00h block address, is guaranteed to be a good block.
AC TEST CONDITION
(KM29N040T:TA=0 to 70C, KM29N040IT:TA=-40 to 85C, VCC=5V10% unless otherwise noted)
Parameter Input Pulse Levels Input Rise and Fall Times Input and Output Timing Levels Output Load Value 0.4V to 2.6V 5ns 0.8V and 2.0V 1 TTL GATE and CL=100pF
CAPACITANCE(TA=25C, VCC= 5V, f=1.0MHz)
Item Input / Output Capacitance Input Capacitance Symbol CI/O CIN Test Condition VIL=0V VIN=0V Min Max 10 10 Unit pF pF
NOTE: Capacitance is periodically sampled and not 100% tested.
MODE SELECTION
CLE H L H L L L L X X X X ALE L H L H L L L X X X(1) X CE L L L L L L L X X X H H H X X X X H X X X X WE RE H H H H H WP X X H H H X X H H L 0V/VCC
(2)
Mode Read Mode Command Input Address Input(3clock) Command Input Address Input(3clock)
Write Mode Data Input
Sequential Read & Data Output During Read(Busy) During Program(Busy) During Erase(Busy) Write Protect Stand-by
NOTE : 1. X can be VIL or VIH 2. WP should be biased to CMOS high or CMOS low for standby.
Program/Erase Characteristics
Parameter Program Time Number of Partial Program Cycles in the Same Frame Block Erase Time Symbol tPROG Nop tBERS Min Typ 0.5 6 Max 1 10 10 Unit ms cycles ms
7
www..com
KM29N040T, KM29N040IT
AC Timing Characteristics for Command / Address / Data Input
Parameter CLE Set-up Time CLE Hold Time CE Setup Time CE Hold Time WE Pulse Width ALE Setup Time ALE Hold Time Data Set-up Time Data Hold Time Write Cycle Time WE High Hold Time Symbol tCLS tCLH tCS tCH tWP tALS tALH tDS tDH tWC tWH Min 50 50 50 50 60 50 50 40 20 120 40
FLASH MEMORY
Max Unit ns ns ns ns ns ns ns ns ns ns ns
AC Characteristics for Operation
Parameter Data Transfer from Cell to Register ALE to RE Delay CE low to RE low (ID read) Ready to RE Low RE Pulse Width WE High to Busy Read Cycle Time RE Access Time RE High to Output Hi-Z CE High to Output Hi-Z RE High Hold Time Output Hi-Z to RE Low CE High to Ready(in case of interception by CE at read) (1) RE Low to Status Output CE Low to Status Output WE High to RE Low RE access time(Read ID) Device Resetting Time (Read/Program/Erase) Symbol tR tAR tCR tRR tRP tWB tRC tREA tRHZ tCHZ tREH tIR tCRY tRSTO tCSTO tWHR tWHRID tRST Min 250 250 100 60 120 0 40 0 50 100 Max 15 200 50 30 50 100+tr(R/B)(2) 60 70 5/10/500 Unit s ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns s
NOTE : 1. If CE goes high within 50ns after the third address input, R/B will not return to VOL. 2. The time to Ready depends on the value of the pull-up resistor tied R/B pin.
8
www..com
KM29N040T, KM29N040IT
KM29N040 Technical Notes
INVALID BLOCKS
FLASH MEMORY
The KM29N040 Flash device may or may not contain up to 3 invalid blocks. Invalid blocks are defined as blocks that contain one o r more invalid bits. Typically, an invalid block will contain a single bad bit. Devices with invalid block(s) have the same qualit y levels as devices with all valid blocks and have the same AC and DC characteristics. An invalid block(s) does not affect the performance o f valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design mus t be able to mask out the invalid block(s) via address mapping. The 1st block of the KM29N040, however, is fully guaranteed to be a g ood block.
Identifying Invalid Block(s) in the KM29N040
All device locations are erased(FFh) prior to shipping. Device with invalid Block(s) will be randomly written with 00h data with in the first or second page in the invalid Block(s). This page may or may not contain the invalid cell(s). The 00h data just marks the block(s) that contains the invalid cell(s). A system that can utilize these devices must be able to recognize invalid block(s) via the fo llowing suggested flow chart (Figure 1).
Start
Set : Block = 0
*
Set : Block n + 1 Check "FF" ? Yes No
No
Create (or update) invalid block(s) Table
Block = 127 ? Yes
*
For the 1st frame of 1st page
End
Figure 1. Flow chart to create invalid block table.
9
www..com
KM29N040T, KM29N040IT
KM29N040 Technical Notes(Continued)
Error in program or erase operation
FLASH MEMORY
The device may fail during a program or erase operation. The following possible failure modes should be considered when implementing a highly reliable system. Failure Mode Block Frame Single Bit Erase Failure Program Failure Program Failure ("1" --> "0") Detection and Countermeasure sequence Read after Erase --> Block Replacement Status Read after Program --> Block Replacement Block Verify after Program --> Retry or ECC
ECC
: Error Correcting Code --> Hamming Code etc. Example) 1bit correction & 2bit detection
Block Replacement
During Program operation ;
Buffer memory
error occurs
When the error happens in Block "A", try to reprogram the data into another Block "B" by reloading from an external Block A buffer. Then, prevent further system access to Block "A"(by creating a "bad block" table or other appropriate scheme.)
Block B
During Erase operation ;
When the error occurs after an erase operation, prevent future accesses to this bad block (again by creating a table within the system or other appropriate scheme.)
10
www..com
KM29N040T, KM29N040IT
* Command Latch Cycle
FLASH MEMORY
CLE tCLS tCS CE tCLH tCH
tWP WE
tALS ALE tDS I/O0~7
tALH
tDH
Command
* Address Latch Cycle
tCLS CLE
tCS CE
tWC
tWC
tWP WE tWH tALS ALE tDS I/O0~7 tDH
tWP tWH
tWP
tALH
tDS
tDH
tDS
tDH
A0~A7
A8~A15
A16~A18
11
www..com
KM29N040T, KM29N040IT
* Input Data Latch Cycle
FLASH MEMORY
tCLH CLE
tCH CE
tALS ALE
tWC
WE tDS I/O0~7 tWH tDH tDS tDH tDS tDH
tWP
tWP
tWP
DIN 0
DIN 1
DIN 31
* Burst Read Cycle After Frame Access (CLE=L, WE=H, ALE=L)
CE
tRC tRHZ* tRP tREA tREH
RE tRHZ tRHZ*
I/O0~7 tRR R/B
Dout
Dout
tREA
tREA
Dout
12
www..com
KM29N040T, KM29N040IT
* Status Read Cycle
tCLS CLE tCLH tREA CE tCH tWP WE tWHR RE tDS I/O0~7 70H tDH tIR tCSTO
FLASH MEMORY
tCHZ*
tRSTO
tRHZ*
Status Output
NOTES : Transition is measured200mV from steady state voltage with load. This parameter is sampled and not 100% tested.
READ OPERATION (READ ONE FRAME)
CLE
CE
WE tWB tAR ALE tR RE tRR I/O0~7
00h
tCHZ
tRC
tRHZ
A0 ~ A7
A8 ~ A15
A16 ~ A18
Dout N
Dout N+1 Dout N+2 Dout N+3 Dout 32
Column Address
Row Address Busy
R/B
13
www..com
KM29N040T, KM29N040IT
READ OPERATION(INTERCEPTED BY CE)
FLASH MEMORY
CLE
CE
WE tWB tAR ALE tR RE tRR I/O0~7
00h
tCHZ
A0~A7
A8~A15
A16~A18
Dout N
Dout N+1
Dout N+2
Dout N+3
Column Address
Row Address Busy
R/B
PROGRAM OPERATION
CLE
CE tWC WE tWB ALE tPROG tWC tWC
RE
Din Din N N+1 1 up to 32 Byte Data Serial Input Din 31
I/O0~7
80H
A0 ~ A7 A8 ~ A15 A16 ~ A18 Row Address
10H Program Command
70H Read Status Command
I/O0
Sequential Data Column Input Command Address
14
R/B
I/O0=0 Successful Program I/O0=1 Error in Program
www..com
KM29N040T, KM29N040IT
BLOCK ERASE OPERATION
FLASH MEMORY
CLE
CE
WE tWB ALE tBERS
RE
I/O0~7
60H
A8~A15
A16~A18
DOH
Block Address
Auto Block Erase Setup Command
Erase Command
15
R/B
Busy
www..com
KM29N040T, KM29N040IT
DEVICE OPERATION
FRAME READ
FLASH MEMORY
Upon initial device power up or after excution of Reset(FFh) command, the device defaults to Read mode. This operation is also i nitiated by writing 00H to the command register along with three address cycles. The three cycle address input must be given for access to each new frame. The read mode is enabled when the frame address is changed. 32 bytes of data within the selected frame are transferred to the d ata registers in less than 15 s(tR). The CPU can detect the completion of this data transfer(t R) by analyzing the output of R/ B pin. Once the data in a frame is loaded into the registers, they may be read out in 120ns cycle time by sequentially pulsing RE with CE staying low. High to low transitions of the RE clock output the data starting from the selected column address up to the last column address within the frame(column 32).
Figure 3. Read Operation
CLE CE WE ALE RE R/B I/O0~7
00H
Busy(Seek Time)
Start Add.(3Cycle) A0~A7 & A8~A18
Data Output(Sequential)
Seek Time
0
31
16
www..com
KM29N040T, KM29N040IT
FRAME PROGRAM
FLASH MEMORY
The device is programmed on a frame basis. The addressing may be done in random order in a block. A frame program cycle consist of a serial data loading period in which up to 32 bytes of data must be loaded into the device, and a nonvolatile programming p eriod in which the loaded data is programmed into the appropriate cells. The sequential data loading period begins by inputting the frame program setup command(80H), followed by the three cycle address input and then sequential data loading. The bytes other than those to be programmed do not need to be loaded. The frame Program confirm command(10H) initiates the programming process. Writing 10H alone without previously entering the serial data will not initiate the programming process. The internal write controller automatically executes the algorithms and t imings necessary for program and verify, thereby freeing the CPU for other tasks. The CPU can detect the completion of a program cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset command are valid while programming is in progress. When the frame Program is complete, the Write Status Bit(I/O 0) may be checked. The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command register remains in Read Status command mode until another valid command is written to the command register.
Figure 4. Frame Program Operation tPROG R/B I/O0~7
80H
Address & Data Input A0~A7 & A8~A18 32 Byte Data
10H
FRAME PROGRAM
While the frame size of the device is 32 Bytes, not all the bytes in a frame have to be programmed at once. The device supports partial frame programming in which a frame may be partially programmed up to 10 separate program operations. The program size in each of the 10 partial program operations is freely determined by the user and do not have to be equal to each other or to any p reset size. However, the user should ensure that the partial program units within a frame do not overlap as "0" data cannot be changed to "1" data without an erase operation. To perform a partial frame program operation, the user only writes the partial frame data t hat is to programmed. Just as in the standard frame program operation, an 80H command is followed by start address data. However, only the partial program data need be divided when programming a frame in 10 partial program operations.
Figure 5. Example of Dividing a Frame into 10 Partial Program Units
1st partial program start address (00h) 2nd partial program start address (04h) 3rd partial program start address (06h) : : : : : : 9th partial program start address (18h) 10th partial program start address (1Fh) FA A2 43 CB 81 28 E0 2A D5 - - - - - - 32 B5 7D 6F AA E1 D7 C0 Single Frame
10th partial frame program data 9th partial frame program data : : : : : : 3rd partial frame program data 2nd partial frame program data 1st partial frame program data
17
www..com
KM29N040T, KM29N040IT
BLOCK ERASE
FLASH MEMORY
The Erase operation is done 4K Bytes(1 block) at a time. Block address loading is accomplished in two cycles initiated by an Era se Setup command(60H). Only address A 12 to A18 are valid while A 8 to A11 is ignored. The Erase Confirm command(D0H) following the block address loading initiates the internal erasing process. This two-step sequence of setup followed by execution command ensures that memory contents are not accidentally erased due to external noise conditions. At the rising edge of WE after the erase confirm command input, the internal write controller handles erase, erase-verify and pulse repetition where required.
Figure 6. Block Erase Operation tBERS R/B I/O0~7
60H
Address Input(2Cycle) Block Add. : A8~A18
D0H
READ STATUS
The device contains a Status Register which may be read to find out whether program or erase operation is complete, and whether the program or erase operation completed successfully. After writing 70H command to the command register, a read cycle outputs the contents of the Status Register to the I/O pins on the falling edge of CE or RE, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory connections even when R/ B pins are common-wired. RE or CE does not need to be toggled for updated status. Refer to table 2 for specific Status Register definitions. The command register remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random r ead cycle, the required read command(00H) should be input before serial page read cycle.
Table2. Status Register Definition
SR I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 Device Operation Write Protect Reserved for Future Use Status Program Definition "0" : Successful Program "1" : Error in Program "0" "0" "0" "0" "0" "0" "0" : Busy "0" : Protected "1" : Ready "1" : Not Protected
18
www..com
KM29N040T, KM29N040IT
RESET
FLASH MEMORY
The device offers a reset feature, executed by writing FFH to the command register. When the device is in Busy state during the read, program or erase mode, the reset operation will abort these operation. In the case of Reset during Program or Erase operations, the contents of memory cells being altered are no longer valid, as the data will be partially programmed or erased. The d evice enters the Read mode after completion of Reset operation as shown Table 3. If the device is already in reset state a new reset command will not be accepted to by the command register. The R/ B pin transitions to low for t RST after the Reset command is written. Reset command is not necessarily for normal device operation. Refer to Figure 7 below.
Figure 7. RESET Operation tRST
R/B I/O0~7
FFH
Table3. Device Status
After Power-up Operation Mode Read After Reset Read
READY/BUSY
The device has a R/ B output that provides a hardware method of indicating the completion of a frame program, erase or read seek completion. The R/ B pin is normally high but transitions to low after program or erase command is written to the command register or a random read is begin after address loading. It returns to high when the internal controller has finished the operation. The pi n is an open-drain driver thereby allowing two or more R/ B outputs to be Or-tied. An appropriate pull-up resister is required for proper operation and the value may be calculated by following equation.
VCC VCC(Max.) - VOL(Max.) Rp = R/B open drain output where IL is the sum of the input currents of all devices tied to the R/B pin. IOL + IL = Note* 8mA + IL
GND Device
Note* KM29N040 ; 5.1V KM29V040 ; 3.2V KM29W040A ; 5.1V when Vcc=3.6V~5.5V 3.2V when Vcc=3.0V~3.6V
19
www..com
KM29N040T, KM29N040IT
DATA PROTECTTION
FLASH MEMORY
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage dete ctor disables all functions whenever Vcc is below about 2V. WP pin provides hardware protection and is recommended to be kept at V IL during power-up and power-down as shown in Figure 8. The two step command sequence for program/erase provides additional software protection.
Figure 8. AC Waveforms for Power Transition
VCC
High
WP
READ ID
The device contains a product identification mode, initiated by writing 90H to the command register, followed by an address inpu t of 00H. Two read cycles sequentially output the manufacture code(ECH), and the device code (Note*). The command register remains in Read ID mode until further commands are issued to it. Figure 9 shows the operation sequence.
Figure 9. Read ID Operation
Note* : KM29V040 : A4H KM29N040 : A4H KM29W040 : A4H
CLE tCR CE tWHRID WE ALE RE I/O0~7 tREA
90H Add. Input(1Cycle) A0~A7:"0" Dout(ECH) Maker code Dout(Note*) Device code
tAR
20
www..com
KM29N040T, KM29N040IT
PACKAGE DIMENSIONS
44(40) LEAD PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(II) 44(40) - TSOP2 - 400F
FLASH MEMORY
Unit :mm/Inch
0~8 0.25 0.010 TYP #44(40) #23(21) 0.45~0.75 0.018~0.030 11.760.20 0.4630.008 10.16 0.400 0.50 0.020 #1 #22(20)
+0.10
0.15 -0.05
+0.004 0.006 -0.002
18.410.10 0.7250.004
1.000.10 0.0390.004
1.20 Max. 0.047
18.81 Max. 0.741
0.10 MAX 0.004 0.05 Min. 0.002
(
0.805 ) 0.032
0.350.10 0.0140.004
0.80 0.0315
21


▲Up To Search▲   

 
Price & Availability of KM29N040IT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X